

13. BACKSPLASHES & UPSTANDS

FABRICATION GUIDELINES

Solid Surface Material

Various options are available for backsplashes (upstands), each with distinct designs and associated manufacturing costs. The chosen design can be fabricated using different manufacturing processes, depending on the selected method. This section outlines the minimum standard procedure required to achieve stable quality in backsplash fabrication.

1. Consideration For Design And Fabrication

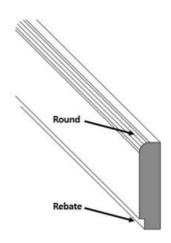
Backsplashes offer a range of design options, serving both decorative and functional purposes in HIMACS installations. It is essential to select the correct fabrication method, as improper techniques can result in failures such as cracking due to stress concentration. Inappropriate fabrication may also lead to increased stress within the material.

Properly fabricated backsplashes contribute to the overall strength and durability of the HIMACS assembly. Therefore, it is important to ensure that the design and fabrication methods are appropriately matched to maximise longevity.

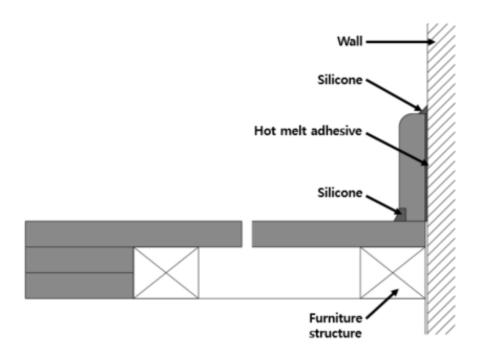
Certain backsplash designs are better suited to specific colours, particularly those featuring veining, pearl or glitter effects, large chips, or a translucent appearance. The fabrication methods described as example in this section are generally recommended for solid colours and granite colours with small to medium chips.

2. Fabricating Backsplashes

Standard Backsplash Installation

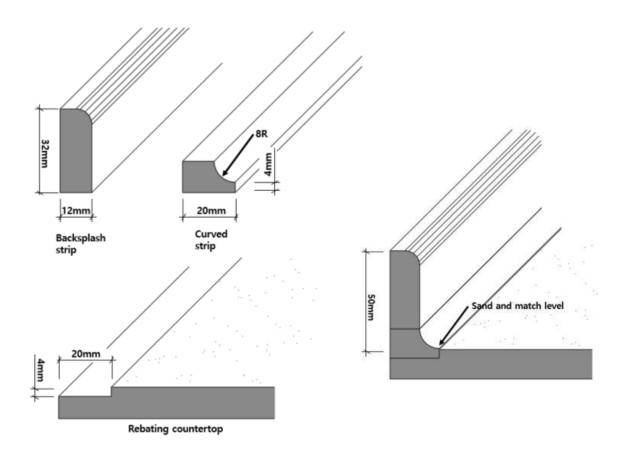

The standard backsplash consists of a HI-MACS strip, trimmed with a radius of 3 to 6 mm and fixed in place using an acrylic-based silicone adhesive. Rebating the underside of the backsplash enhances the durability of the silicone seal.

Procedure:


- Verify the installed worktop and measure accurately to determine the required size for the backsplash.
- Inspect and remove any obstructions from the wall and worktop surfaces.
- Fabricate the backsplash to the correct dimensions. Rebate the underside to allow for stable application of silicone, and form a rounded edge.
- · Clean the edges of both the backsplash and the worktop to be joined, using denatured alcohol.
- Prepare a colour-matched, mould-resistant silicone and apply a continuous, wide bead along the entire seam area of the worktop.
- Apply hot-melt adhesive to the rear of the backsplash at intervals of 300 mm.
- Position the backsplash accurately.
- Apply silicone to the joint between the worktop and the backsplash.
- Apply silicone to the joint between the backsplash and the wall.
- Remove any excess sealant.

Standard backsplash

Installing standard backsplash

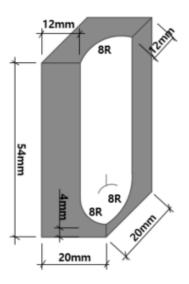


Curved Backsplash for 12 mm Sheet

To prevent the accumulation of moisture or bacteria, a curved backsplash is recommended as the most effective solution, particularly in wet areas such as sinks or vanity units. This design also facilitates easy cleaning in a variety of other applications.

Procedure:

- Fabricate a curved strip with an 8 mm radius at the edge and a width of 20 mm.
- Cut a backsplash piece to a width of 32 mm and form a rounded edge.
- Create a rebate on the rear of the worktop, measuring 20 mm in width and 4 mm in depth.
- Bond the curved strip and backsplash together. Once the adhesive has cured, sand the
- Insert the curved backsplash into the worktop and complete the installation by trimming and sanding as required.

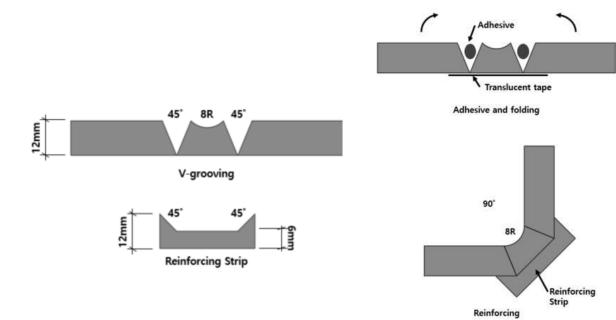


Setting Up an Internal Corner

To configure an internal corner, begin by preparing a corner piece according to the selected radius - in this case, radius R8. For a backsplash with a height of 50 mm, fabricate a block measuring 20 mm × 20 mm × 62 mm. Using a specialised router, shape the internal radius, or alternatively, use a router bit to plunge after the block has been correctly positioned and adhered.

Joining the Corner Block with a Curved **Backsplash**

This corner block may be integrated with a curved backsplash in order to preserve the structural integrity and aesthetic advantages of the curved design.



V-Grooving for 12 mm HIMACS Sheets

V-grooving is a precision machining technique employed to facilitate the creation of curved joints in solid surface materials, particularly sheets with a thickness of 12 mm. This method involves routing a V-shaped channel along the rear surface of the sheet, allowing it to be bent smoothly without compromising structural integrity or surface finish.

The process is especially beneficial in large-scale fabrication environments, where efficiency and consistency are paramount. By enabling rapid and repeatable formation of curved profiles, Vgrooving significantly reduces manual labour and assembly time compared to traditional thermoforming or segmented bending techniques.

However, successful implementation of V-grooving requires investment in specialised routing equipment capable of maintaining consistent depth and angle across the groove. Precision control is essential to avoid material failure or visible surface distortion. Operators must also ensure proper alignment and adhesive bonding during final assembly to maintain the mechanical strength and aesthetic quality of the curved joint.

Solid Surface Material

HI-MACS

This guideline has been created to provide technical information for successful fabrication and installation of HIMACS, and it is intended to be used in a safe environment considering their own discretion and risk by who has technical skill for fabrication and installation of HIMACS.

This guideline is continually revised to provide reliable and up-to-date information, replacing all previous versions of the guideline and technical information, however the usage and conditions of use are beyond LX Hausys control, LX Hausys cannot guarantee the suitability of material, fabrication and installation for all usage and conditions of use. Users should not regard or rely on this guideline as a complete, sole, up-to-date or absolute information. HIMACS users, fabricator and installer should review whether the design for HIMACS, fabrication method, installation method and required performance are suitable for the intended use and conditions of use. LX Hausys shall not be liable for any direct or indirect, commercial damages or losses caused by the fabrication and installation results of HIMACS using any or all these guidelines. In addition, the results of joining with other materials, and the fabrication and installation guidelines for other materials shall not be covered by LX Hausys.

This guideline does not encourage to violate any laws, patents and licenses, and cannot be used as a basis for legal liability. All works on / from HIMACS must be performed in accordance with related laws and regulations.

LX Hausys reserves the right to change the technical information and disclaimers in this guideline for technical development and further information, and the use of HIMACS or this guideline is considered to accommodate the information and changes provided in this guideline. Therefore, please check the changed details of this guideline from time to time.

LX Hausys reserves all information in this material, and no reproduction or alteration is permitted in any way for all or any part of the information without the official written permission of LX Hausys.

LX HAUSYS Europe GmbH Lyoner Str. 15 60528 Frankfurt am Main Germany